An Efficient Local Search Algorithm for k-Median Problem

نویسندگان

  • RUI PAN
  • DAMING ZHU
چکیده

The k-median problem is one of the NP-hard combinatorial optimization problems. It falls into the general class of clustering problem and has application in the field of classification and data mining. One has confirmed that local search technique is the most effective and simplest method for designing the algorithms for k-median problem, and has been looking for the more efficient algorithms which can simplify the search space of the problem to solve the large-scale instance and obtain the high quality solution. In this paper, we first analyze the search space of the problem by making use of fitness distance correlation method and reveal the relation between local minima and global minima, and then we propose a more effective and efficient algorithm which gradually scales down the size of the instance based on the intersection of local minima so that the original search space is simplified and the better solution is found. Finally, elaborate experimental results attest the efficiency and computational effect of the algorithm. Key–Words: k-Median, NP-hard, Combinatorial optimization, Local search, Approximation algorithm

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tabu-KM: A Hybrid Clustering Algorithm Based on Tabu Search Approach

  The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the ...

متن کامل

A novel local search method for microaggregation

In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2k_1 records, such that the sum of the within-group squ...

متن کامل

Winner Determination in Combinatorial Auctions using Hybrid Ant Colony Optimization and Multi-Neighborhood Local Search

A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The WDP in combinatorial auctions is the problem of finding winning bids that maximize the auctioneer’s revenue under the constraint that each item can be allocated to at most one bidder. The WDP is known as an NP-hard problem with practical applications like electronic commerce, production manag...

متن کامل

A new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problem

Automated Guided Vehicle System (AGVS) provides the flexibility and automation demanded by Flexible Manufacturing System (FMS). However, with the growing concern on responsible management of resource use, it is crucial to manage these vehicles in an efficient way in order reduces travel time and controls conflicts and congestions. This paper presents the development process of a new Memetic Alg...

متن کامل

An efficient algorithm for finding the semi-obnoxious $(k,l)$-core of a tree

In this paper we study finding the $(k,l)$-core problem on a tree which the vertices have positive or negative weights. Let $T=(V,E)$ be a tree. The $(k,l)$-core of $T$ is a subtree with at most $k$ leaves and with a diameter of at most $l$ which the sum of the weighted distances from all vertices to this subtree is minimized. We show that, when the sum of the weights of vertices is negative, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006